and sensory perceptions, loss of coordination, impaired short term memory, compound in marijuana. When injected or smoked, it produces euphoric effects.

Tetrahydrocannabinol (THC) is generally accepted to be the principle active metabolite of marijuana excreted in the urine is 11-nor-9-carboxylic acid. Therefore, the presence of detected cannabinoids, including carboxyl metabolite, in the urine indicates marijuana/cannabis use.

The length of time following drug use for which a positive result may occur is dependent upon several factors, including the frequency and amount of drug, metabolic rate, excretion rate, drug half-life, the drug user's age, weight, activity and diet.

TEST PRINCIPLE
Acro Rapid THC (Marijuana) Urine Test is based on the principle of competitive immunochemical reaction between an immobilized drug-protein conjugate and THC, which may be present in the urine sample for limited binding sites of a labeled THC antibody. The test contains a nitrocellulose membrane strip precoated with drug-protein conjugate in the test region and a wicking pad containing colored antibody-colloidal gold conjugate. During the test, the urine sample is allowed to migrate upward and hydrate the antibody-colloidal gold conjugate. The mixture then migrates along the membrane chromatographically by capillary action to the immobilized drug-protein band in the test region. When drug is absent in the urine, the colored antibody-colloidal gold conjugate and immobilized drug-protein bind specifically to form a visible line in the test region (test line). When THC is present in the urine sample, it will compete with the drug-protein conjugate for the limited antibody binding sites. The test line will be less intense with increasing drug concentration. When the drug is present in sufficient concentration in the urine sample, it will form the limited antibody binding sites, which will inhibit attachment of the colored antibody-colloidal gold conjugate to the drug-protein conjugate in the test region. Therefore the presence of the test line indicates a negative result for THC and the absence of the test line indicates a preliminary positive result for THC.

Another visible line, control line, generated by a different antigen/antibody reaction is also present at a control region (C) next to the test region of the test strip. The control line should always appear, regardless of the presence of the drug or drug metabolites in the urine sample. This means that a negative urine sample will produce two lines (test line and control line), and a positive urine sample will generate only one line (control line). The presence of control line serves as a built-in control, which demonstrates that sufficient volume was added.

REAGENTS AND MATERIALS SUPPLIED
1. Test Cassette contains membrane-embedded reagents in a protein matrix containing sodium azide as a preservative.
2. Anti-THC monoclonal antibody is from murine ascites.
3. Dropper. A transfer pipette is included with each test device inside the foil pouch.
4. Test Instructions

MATERIALS REQUIRED, BUT NOT PROVIDED
1. Timer.
2. Sample container.

WARNINGS AND PRECAUTIONS
1. For laboratory in vitro diagnostic use only
2. Urine specimens may be potentially infectious. Proper handling and disposal procedures should be established.
3. Avoid cross-contamination of urine samples. Use a new dropper or transfer pipette for adding each test sample.
4. Test device should remain sealed until ready for use.
5. Do not use the test kit after the expiration date.

STORAGE AND STABILITY
Store at 2-30°C (36-86°F) in the original sealed pouch. Do not freeze.

SPECIMEN COLLECTION AND HANDLING
Fresh urine does not require any pretreatment. A fresh urine sample should be collected in the container provided. Alternatively, a clean dry plastic or glass container may be used for specimen collection. If the specimen is not immediately tested after the specimen collection, the specimen may be refrigerated at 2-8°C for up to 2 days or frozen at -20°C for longer period of time. Specimens that have been refrigerated must be equilibrated to room temperature prior to testing. Frozen specimens must be thawed and mixed thoroughly prior to testing.

Note: Urine specimens and all materials coming in contact with the specimens should be handled and disposed as if capable of transmitting infection. Avoid contact with skin by wearing gloves and proper laboratory attire.

ASSAY PROCEDURE
1. Bring the test components and urine sample to room temperature (15° - 28º C) before testing. Do not open the foil pouch until ready to begin testing.
2. Open the foil pouch at the notch and remove the test device and dropper prior to testing. Place the device on a clean, level surface.
3. Hold the dropper vertically and dispense 2 drops (~80 μl) of urine sample without air bubbles into the sample well “S” of the test device.
4. Read the result between five and ten minutes.

IMPORTANT: Waiting more than ten minutes before reading the test result may cause the test result to be inaccurate.

INTERPRETATION OF RESULTS

1. Preliminary Positive a rose-pink color band appears in the Control Zone “C” but not in the Test Zone “T”. A preliminary positive result indicates THC level in the urine sample is at or above the detection sensitivity of 50 ng/mL. The sample should be confirmed.
2. Negative: two horizontal rose-pink color bands appear, one in the Control zone “C” and one in the Test Zone “T”. A negative result indicates THC level in the urine sample is below the detection sensitivity of 50 ng/mL.
3. Invalid: no rose-pink bands appear, or a band appears in the Test Zone “T”, but not in the Control Zone “C”. An invalid result may be due to improper testing procedure or deterioration of the kit components.

Note: There is no meaning attributed to line color intensity or width.

QUALITY CONTROL
An internal procedure control is included in the test device. A control line must form regardless of the presence or absence of drugs or metabolites. The presence
of the line in the Control region indicates that a proper sample volume has been used. If the line in the Control region does not form, the test is considered invalid.

To ensure proper kit performance, it is recommended that the test devices be tested once a week or prior to use with external controls. External controls are available from commercial sources. It is important to make sure the results of the control materials are correct. If they are not the test results are invalid. Additional controls may be tested according to guidelines or requirement of local state, and/or federal regulations or accrediting organizations.

LIMITATIONS OF PROCEDURE
1. The assay is designed for use with human urine only.
2. A preliminary positive result indicates only the presence of THC and does not indicate or measure intoxication.
3. See specificity section for substances that have been shown to produce positive results, or that did not interfere with test performance under conditions described. There is a possibility that technical or procedural error as well as other substances not listed may interfere with the test and cause false results.
4. If adulteration is suspected, the test should be repeated with a new sample.
5. Some OTC or prescription drugs are known to interfere with THC assays.

PERFORMANCE CHARACTERISTICS
1. Analytical Sensitivity. The Acro Rapid THC (Marijuana) Urine Test detects THC and its metabolites in urine at concentrations equal to or greater than 50 ng/mL. Please see the “cutoff study” and method comparison section for details.
2. Analytical Specificity. Interference of substances that may be present in urine specimens, as well as effect of sample pH and specific gravity was also studied.
 a. Cross-reactivity of non-THC related compounds were tested using the assay devices. No cross-reactivity was detected with the substances listed in Table I.
 b. Table II lists THC related substances and concentrations that produced results approximately equivalent to the cutoff level for THC.
 c. Varying sample pH within the range of 4 and 9 has no significant effect on the assay results.
 d. Varying sample specific gravity within the range of 1.003 and 1.040 has no significant effect on the assay results.

Table-I: Compounds tested and found not to cross-react with the test at the concentration of 10 ng/mL and 100 ng/mL concentration in urine.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Acetaminophen</th>
<th>Acetone</th>
<th>Albumin</th>
<th>Ampicillin</th>
<th>Ascorbic Acid</th>
<th>Aspartame</th>
<th>Aspirin</th>
<th>Atropine</th>
<th>Benzocaine</th>
<th>Bilirubin</th>
<th>Caffeine</th>
<th>Chloroquine</th>
<th>(+/-)-Chlorpheniramine</th>
<th>(+/-)-Chlorpheniramine</th>
<th>Creatine</th>
<th>Dextroamphetamine</th>
<th>Dextromethorphan</th>
<th>Diphenhydramine</th>
<th>Dopamine</th>
<th>(+/-)-Epinephrine</th>
<th>Erythromycin</th>
<th>Ethanol</th>
<th>Etorphamide</th>
<th>Glucose</th>
<th>Guaiacol Glycerol Ether</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hemoglobin</td>
<td>Ibuprofen</td>
<td>(+/-)-Isoproterenol</td>
<td>Ketamine</td>
<td>Levorphanol</td>
<td>Lidocaine</td>
<td>(+)-Naproxen</td>
<td>Nicamidine</td>
<td>Nicotine</td>
<td>(+/-)-Norephedrine</td>
<td>Oxalic Acid</td>
<td>Penicillin-G</td>
<td>Pheniramime</td>
<td>Pheniramime</td>
<td>Phenothiazine</td>
<td>1-Phenylylephrine</td>
<td>β-Phenylethylamine</td>
<td>Propranolol</td>
<td>Quinidine</td>
<td>Ritalinidine</td>
<td>Riboflavin</td>
<td>Sodium Chloride</td>
<td>Theophylline</td>
<td>Tyramine</td>
<td>4-Dimethylaminoantipyrine</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

3. Method Comparison. The accuracy study of the Acro Rapid THC (Marijuana) Urine Test was performed by testing clinical THC urine samples with the device and comparing with a predicate rapid test or GC/MS analysis results. The negative samples were compared with the predicate device results, and 10% of the samples were confirmed with GC/MS analysis. All the positive samples were confirmed with GC/MS analysis results.

<table>
<thead>
<tr>
<th>THC conc.</th>
<th># Tested</th>
<th># Positive (+)</th>
<th># Negative (-)</th>
<th>% Correct Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ng/mL</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>100%</td>
</tr>
<tr>
<td>25 ng/mL</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>100%</td>
</tr>
<tr>
<td>37.5 ng/mL</td>
<td>60</td>
<td>15</td>
<td>45</td>
<td>75%</td>
</tr>
<tr>
<td>62.5 ng/mL</td>
<td>60</td>
<td>44</td>
<td>16</td>
<td>73%</td>
</tr>
<tr>
<td>75 ng/mL</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>100 ng/mL</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td>100%</td>
</tr>
</tbody>
</table>

% Agreement among the positives is 88% (44/50)
% Agreement among the negatives is 96% (77/80)

4. Reproducibility/Cut-off study. The reproducibility of the assay at the cut-off and other concentrations was determined by the repetitive assaying of six levels of THC controls. The resultant data are summarized as follows:

Table-II: THC-related compounds at the concentration indicated showed a positive response during testing of 1:1 serial dilutions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration in ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-nor-A-9-THC-9-COOH</td>
<td>50</td>
</tr>
<tr>
<td>11-hydroxy-A-9-THC</td>
<td>1,000</td>
</tr>
<tr>
<td>Δ8-tetrahydrocannabinol</td>
<td>5,000</td>
</tr>
<tr>
<td>Δ9-tetrahydrocannabinol</td>
<td>5,000</td>
</tr>
<tr>
<td>Cannabidiol</td>
<td>10,000</td>
</tr>
<tr>
<td>Cannabidiol</td>
<td>>100,000</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY